

Towards the best management of SuDS treatment trains

by

Nicolas BASTIEN, Heriot Watt University

Dr S. ARTHUR Dr S. WALLIS Dr M. SCHOLZ

SUDSnet 12-13 November 2009 Coventry

Overview

- SuDS presentation & Actual design
- Objectives
- Methodology
- Results
- Conclusion
- Further research
- Questions / feedback

Objectives

Methodology

Results

Conclusion

Further research

Questions

The "treatment train"

Treatment train

- Mimic natural drainage
- Better treatment
- Risk management
- Avoid shock loads

- Adoption
- Costs
- Land take
- Non integrated approach

Over 70% of SuDS schemes in Scotland are using only a single SuDS device (Wild, 2002)

Objectives

Methodology

Results

Conclusion

Further research

Questions

Encourage move away from "end-of-pipe" techniques

Optimise management trains for different developments

SuDS presentation

Objectives

Methodology

- Selection
- Holistic assessment
- Case study

Results

Conclusion

Further research

Questions

Holistic assessment of SuDS in series

Objectives

Methodology

- Selection
- Holistic assessment
- Case study

Results

Conclusion

Further research

Questions

- Developers
- Environmental regulator
- Sewerage undertaker
- Residents
- Planning authorities

- Whole Life Costs
- Flood risk management
- Water treatment
- Land take

SuDS presentation

Objectives

Methodology

- Selection
- Holistic assessment
- Case study

Results

Conclusion

Further research

Questions

- Developers
- Environmental regulator
- Sewerage undertaker
- Residents
- Planning authorities

- Whole Life Costs
- Flood risk management
- Water treatment
- Land take

Environmental regulator

Local authoirities

Impact on watercourse water quality and channel hydrology

Risk of downstream flooding

- No attenuation
- Limited attenuation (30 years)
- Robust attenuation (100 or 200 years)

SuDS presentation

Objectives

Methodology

- Selection
- Holistic assessment
- Case study

Results

Conclusion

Further research

Questions

- Developers
- Environmental regulator
- Sewerage undertaker
- Residents
- Planning authorities

- Whole Life Costs
- Flood risk management
- Water treatment
- Land take

Parameters influencing SuDS water quality performance:

- Influent water quality
- SuDS ability to remove pollutants
- Residence time
- Area of facility

Model for urban stormwater improvement conceptualisation: MUSIC

Input:

M1-60 event

TSS 160 mg.l⁻¹ TN 2.63 mg.l⁻¹

TP 0.35 mg.l⁻¹

SuDS presentation

Objectives

Methodology

- Selection
- Holistic assessment
- Case study

Results

Conclusion

Further research

Questions

- Developers
- Environmental regulator
- Sewerage undertaker
- Residents
- Planning authorities

- Whole Life Costs
- Flood risk management
- Water treatment
- Land take

Design based on guidelines available in the UK:

- CIRIA, 2007. The SuDS Manual
- Scottish Water, 2007. Sewers for Scotland, 2^d edition

Objectives

Methodology

- Selection
- Holistic assessment
- Case study

Results

Conclusion

Further research

Questions

Clyde Gateway SWMP:

- 339 Ha redevelopment
- 16 Ha allocated to regional SuDS controls

Dalmarnock Road area:

- 20 Ha development
- 5000 m² for regional control

SuDS presentation

Objectives

Methodology

Results

- Selection
- Assessment

Conclusion

Further research

Questions

- Catchment and site characteristics
- SuDS characteristics
- Land use
- Potential amenity biodiversity / density

Objectives

Methodology

Results

- Selection
- Assessment

Conclusion

Further research

Questions

Whole Life Cost

RP Regional Pond
GR Green Roof
CBP Concrete Block
Pavement
WB Water Butt
SW Swales
LW Linear Wetland

A few interesting solutions:

- Green roofs
- Swales
- Linear wetland

Objectives

Methodology

Results

- Selection
- Assessment

Conclusion

Further research

Questions

Water quality

Significant water quality improvements

E.g. TSS improvement up to 25%.

Objectives

Methodology

Results

- Selection
- Assessment

Conclusion

Further research

Questions

Land take

A few interesting solutions:

- Concrete Block
 Pavement
- Green Roofs

Opportunity to reduce land take based on:

- Reduction of attenuation
 volume
- Reduction of permanent pool

Objectives

Methodology

Results

- Selection
- Assessment

Conclusion

Further research

Questions

Land take reduction: permaenent pool reduction

SuDS Treatment Trains	Achievable reduction of regional SuDS land take (%)	Achievable reduction of SuDS treatment train's land take (%)
RP	0	0
RP GR	0	0
RP CBP	20	20
RP WB	13	13
RP LW	100	27
RP SW	20	6
RP CBP GR	20	20
RP CBP WB	33	33
RP LW GR	100	27
RP LW CBP	100	27
RP LW WB	100	27
RP SW GR	20	6
RP SW CBP	20	6
RP SW WB	26	7
RP LW GR CBP	100	27
RP LW GR WB	100	27
RP LW CBP WB	100	27
RP SW LW GR	100	16
RP SW LW CBP	100	16
RP SW LW WB	100	16
RP SW LW GR CBP	100	16
RP SW LW GR WB	100	16
RP SW LW GR CBP WB	100	16

Regional control can be significantly reduced

Difficult to offset SuDS treatment train footprint

^{*} Based on TSS removal

SuDS presentation

Objectives

Methodology

Results

- Selection
- Assessment

Conclusion

Further research

Questions

Establish relationship between:

- Whole life costs
- Land take
- Water quality
- Flood risk management

Limited retention

Robust retention

Objectives

Methodology

Results

Conclusion

Further research

Questions

Alternative solutions are existing

SuDS presentation

Objectives

Methodology

Results

Conclusion

Further research

Questions

- Developers
- Environmental regulator
- Sewerage undertaker
- Residents
- Planning authorities

- Whole Life Costs
- Flood risk management
- Water treatment
- Land take
- Understand public

perception of SuDS

Thank you!

Acknowledgements:

